MNIST
Format specification
MNIST format specification is available here.
Fashion MNIST format specification is available here.
MNIST in CSV format specification is available here.
The dataset has several data formats available. Datumaro supports the binary (Python pickle) format and the CSV variant. Each data format is covered by a separate Datumaro format.
Supported formats:
- Binary (Python pickle) -
mnist
- CSV -
mnist_csv
Supported annotation types:
Label
The format only supports single channel 28 x 28 images.
Import MNIST dataset
The MNIST dataset is available for free download:
- train-images-idx3-ubyte.gz: training set images
- train-labels-idx1-ubyte.gz: training set labels
- t10k-images-idx3-ubyte.gz: test set images
- t10k-labels-idx1-ubyte.gz: test set labels
The Fashion MNIST dataset is available for free download:
- train-images-idx3-ubyte.gz: training set images
- train-labels-idx1-ubyte.gz: training set labels
- t10k-images-idx3-ubyte.gz: test set images
- t10k-labels-idx1-ubyte.gz: test set labels
The MNIST in CSV dataset is available for free download:
A Datumaro project with a MNIST source can be created in the following way:
datum create
datum import --format mnist <path/to/dataset>
datum import --format mnist_csv <path/to/dataset>
MNIST dataset directory should have the following structure:
└─ Dataset/
├── dataset_meta.json # a list of non-format labels (optional)
├── labels.txt # a list of non-digit labels in other format (optional)
├── t10k-images-idx3-ubyte.gz
├── t10k-labels-idx1-ubyte.gz
├── train-images-idx3-ubyte.gz
└── train-labels-idx1-ubyte.gz
MNIST in CSV dataset directory should have the following structure:
└─ Dataset/
├── dataset_meta.json # a list of non-format labels (optional)
├── labels.txt # a list of non-digit labels in other format (optional)
├── mnist_test.csv
└── mnist_train.csv
To add custom classes, you can use dataset_meta.json
and labels.txt
.
If the dataset_meta.json
is not represented in the dataset, then
labels.txt
will be imported if possible.
For example, labels.txt
for Fashion MNIST the following contents:
T-shirt/top
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot
Export to other formats
Datumaro can convert a MNIST dataset into any other format Datumaro supports. To get the expected result, convert the dataset to formats that support the classification task (e.g. CIFAR-10/100, ImageNet, PascalVOC, etc.)
There are several ways to convert a MNIST dataset to other dataset formats:
datum create
datum import -f mnist <path/to/mnist>
datum export -f imagenet -o <output/dir>
or
datum convert -if mnist -i <path/to/mnist> -f imagenet -o <output/dir>
Or, using Python API:
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/dataset>', 'mnist')
dataset.export('save_dir', 'imagenet', save_media=True)
These steps also will work for MNIST in CSV, if you use mnist_csv
instead of mnist
.
Export to MNIST
There are several ways to convert a dataset to MNIST format:
# export dataset into MNIST format from existing project
datum export -p <path/to/project> -f mnist -o <output/dir> \
-- --save-media
# converting to MNIST format from other format
datum convert -if imagenet -i <path/to/dataset> \
-f mnist -o <output/dir> -- --save-media
Extra options for exporting to MNIST format:
--save-media
allow to export dataset with saving media files (by defaultFalse
)--image-ext <IMAGE_EXT>
allow to specify image extension for exporting dataset (by default.png
)--save-dataset-meta
- allow to export dataset with saving dataset meta file (by defaultFalse
)
These commands also work for MNIST in CSV if you use mnist_csv
instead of mnist
.
Examples
Datumaro supports filtering, transformation, merging etc. for all formats and for the MNIST format in particular. Follow the user manual to get more information about these operations.
There are several examples of using Datumaro operations to solve particular problems with MNIST dataset:
Example 1. How to create a custom MNIST-like dataset
import numpy as np
import datumaro as dm
dataset = dm.Dataset.from_iterable([
dm.DatasetItem(id=0, image=np.ones((28, 28)),
annotations=[dm.Label(2)]
),
dm.DatasetItem(id=1, image=np.ones((28, 28)),
annotations=[dm.Label(7)]
)
], categories=[str(label) for label in range(10)])
dataset.export('./dataset', format='mnist')
Example 2. How to filter and convert a MNIST dataset to ImageNet
Convert MNIST dataset to ImageNet format, keep only images with 3
class
presented:
# Download MNIST dataset:
# https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz
# https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz
datum convert --input-format mnist --input-path <path/to/mnist> \
--output-format imagenet \
--filter '/item[annotation/label="3"]'
Examples of using this format from the code can be found in the binary format tests and csv format tests