Supervisely Point Cloud
Format specification
Specification for the Point Cloud data format is available here.
You can also find examples of working with the dataset here.
Supported annotation types:
cuboid_3d
Supported annotation attributes:
track_id
(read/write, integer), responsible forobject
fieldcreatedAt
(write, string),updatedAt
(write, string),labelerLogin
(write, string), responsible for the corresponding fields in the annotation file.- arbitrary attributes
Supported image attributes:
description
(read/write, string),createdAt
(write, string),updatedAt
(write, string),labelerLogin
(write, string), responsible for the corresponding fields in the annotation file.frame
(read/write, integer). Indicates frame number of the image.- arbitrary attributes
Import Supervisely Point Cloud dataset
An example dataset in Supervisely Point Cloud format is available for download:
https://drive.google.com/u/0/uc?id=1BtZyffWtWNR-mk_PHNPMnGgSlAkkQpBl&export=download
Point Cloud dataset directory should have the following structure:
└─ Dataset/
├── ds0/
│ ├── ann/
│ │ ├── <pcdname1.pcd.json>
│ │ ├── <pcdname2.pcd.json>
│ │ └── ...
│ ├── pointcloud/
│ │ ├── <pcdname1.pcd>
│ │ ├── <pcdname1.pcd>
│ │ └── ...
│ ├── related_images/
│ │ ├── <pcdname1_pcd>/
│ │ | ├── <image_name.ext.json>
│ │ | ├── <image_name.ext.json>
│ │ └── ...
├── key_id_map.json
└── meta.json
There are two ways to import a Supervisely Point Cloud dataset:
datum create
datum import --format sly_pointcloud --input-path <path/to/dataset>
or
datum create
datum import -f sly_pointcloud <path/to/dataset>
To make sure that the selected dataset has been added to the project,
you can run datum project info
, which will display the project and dataset
information.
Export to other formats
Datumaro can convert Supervisely Point Cloud dataset into any other format Datumaro supports.
Such conversion will only be successful if the output
format can represent the type of dataset you want to convert,
e.g. 3D point clouds can be saved in KITTI Raw
format,
but not in COCO keypoints
.
There are several ways to convert a Supervisely Point Cloud dataset to other dataset formats:
datum create
datum import -f sly_pointcloud <path/to/sly_pcd/>
datum export -f kitti_raw -o <output/dir>
or
datum convert -if sly_pointcloud -i <path/to/sly_pcd/> -f kitti_raw
Or, using Python API:
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/dataset>', 'sly_pointcloud')
dataset.export('save_dir', 'kitti_raw', save_media=True)
Export to Supervisely Point Cloud
There are several ways to convert a dataset to Supervisely Point Cloud format:
# export dataset into Supervisely Point Cloud format from existing project
datum export -p <path/to/project> -f sly_pointcloud -o <output/dir> \
-- --save-media
# converting to Supervisely Point Cloud format from other format
datum convert -if kitti_raw -i <path/to/dataset> \
-f sly_pointcloud -o <output/dir> -- --save-media
Extra options for exporting in Supervisely Point Cloud format:
--save-media
allow to export dataset with saving media files. This will include point clouds and related images (by defaultFalse
)--image-ext IMAGE_EXT
allow to specify image extension for exporting dataset (by default - keep original or use.png
, if none)--reindex
assigns new indices to frames and annotations.--allow-undeclared-attrs
allows writing arbitrary annotation attributes. By default, only attributes specified in the input dataset metainfo will be written.
Examples
Example 1. Import dataset, compute statistics
datum create -o project
datum import -p project -f sly_pointcloud ../sly_dataset/
datum stats -p project
Example 2. Convert Supervisely Point Clouds to KITTI Raw
datum convert -if sly_pointcloud -i ../sly_pcd/ \
-f kitti_raw -o my_kitti/ -- --save-media --reindex --allow-attrs
Example 3. Create a custom dataset
import datumaro as dm
dataset = dm.Dataset.from_iterable([
dm.DatasetItem(id='frame_1',
annotations=[
dm.Cuboid3d(id=206, label=0,
position=[320.86, 979.18, 1.04],
attributes={'occluded': False, 'track_id': 1, 'x': 1}),
dm.Cuboid3d(id=207, label=1,
position=[318.19, 974.65, 1.29],
attributes={'occluded': True, 'track_id': 2}),
],
pcd='path/to/pcd1.pcd',
attributes={'frame': 0, 'description': 'zzz'}
),
dm.DatasetItem(id='frm2',
annotations=[
dm.Cuboid3d(id=208, label=1,
position=[23.04, 8.75, -0.78],
attributes={'occluded': False, 'track_id': 2})
],
pcd='path/to/pcd2.pcd', related_images=['image2.png'],
attributes={'frame': 1}
),
], categories=['cat', 'dog'])
dataset.export('my_dataset/', format='sly_pointcloud', save_media=True,
allow_undeclared_attrs=True)
Examples of using this format from the code can be found in the format tests