Vgg Face2 CSV
Format specification
Vgg Face 2 is a dataset for face-recognition task, the repository with some information and sample data of Vgg Face 2 is available here
Supported types of annotations:
Bbox
Points
Label
Format doesn’t support any attributes for annotations objects.
Import Vgg Face2 dataset
A Datumaro project with a Vgg Face 2 dataset can be created in the following way:
datum create
datum import -f vgg_face2 <path_to_dataset>
Note: if you use
datum import
then <path_to_dataset> should not be a subdirectory of directory with Datumaro project, see more information about it in the docs.
And you can also load Vgg Face 2 through the Python API:
import datumaro as dm
dataset = dm.Dataset.import_from('<path_to_dataset>', format='vgg_face2')
For successful importing of Vgg Face2 face the input directory with dataset should has the following structure:
vgg_face2_dataset/
├── labels.txt # labels mapping
├── bb_landmark
│ ├── loose_bb_test.csv # information about bounding boxes for test subset
│ ├── loose_bb_train.csv
│ ├── loose_bb_<any_other_subset_name>.csv
│ ├── loose_landmark_test.csv # landmark points information for test subset
│ ├── loose_landmark_train.csv
│ └── loose_landmark_<any_other_subset_name>.csv
├── test
│ ├── n000001 # directory with images for n000001 label
│ │ ├── 0001_01.jpg
│ │ ├── 0001_02.jpg
│ │ ├── ...
│ ├── n000002 # directory with images for n000002 label
│ │ ├── 0002_01.jpg
│ │ ├── 0003_01.jpg
│ │ ├── ...
│ ├── ...
├── train
│ ├── n000004
│ │ ├── 0004_01.jpg
│ │ ├── 0004_02.jpg
│ │ ├── ...
│ ├── ...
└── <any_other_subset_name>
├── ...
Export Vgg Face2 dataset
Datumaro can convert a Vgg Face2 dataset into any other format Datumaro supports. There is few examples how to do it:
# Using `convert` command
datum convert -if vgg_face2 -i <path_to_vgg_face2> \
-f voc -o <output_dir> -- --save-images
# Using Datumaro project
datum create
datum import -f vgg_face2 <path_to_vgg_face2>
datum export -f yolo -o <output_dir>
Note: to get the expected result from the conversion, the output format should support the same types of annotations (one or more) as Vgg Face2 (
Bbox
,Points
,Label
)
And also you can convert your Vgg Face2 dataset using Python API
import datumaro as dm
vgg_face2_dataset = dm.Dataset.import_from('<path_to_dataset', format='vgg_face2')
vgg_face2_dataset.export('<output_dir>', format='open_images', save_media=True)
Note: some formats have extra export options. For particular format see the docs to get information about it.
Export dataset to the Vgg Face2 format
If you have dataset in some format and want to convert this dataset
into the Vgg Face2, ensure that this dataset contains Bbox
or/and Points
or/and Label
and use Datumaro to perform conversion.
There is few examples:
# Using convert command
datum convert -if wider_face -i <path_to_wider> \
-f vgg_face2 -o <output_dir>
# Using Datumaro project
datum create
datum import -f wider_face <path_to_wider>
datum export -f vgg_face2 -o <output_dir> -- --save-media --image-ext '.png'
Note:
vgg_face2
format supports only oneBbox
per image
Extra options for exporting to Vgg Face2 format:
--save-media
allow to export dataset with saving media files (by defaultFalse
)--image-ext <IMAGE_EXT>
allow to specify image extension for exporting the dataset (by default.png
)--save-dataset-meta
- allow to export dataset with saving dataset meta file (by defaultFalse
)