Getting started
To read about the design concept and features of Datumaro, go to the design section.
Installation
Dependencies
- Python (3.7+)
- Optional: OpenVINO, TensorFlow, PyTorch, MxNet, Caffe, Accuracy Checker, Git
Optionally, create a virtual environment:
python -m pip install virtualenv
python -m virtualenv venv
. venv/bin/activate
Install Datumaro package:
pip install datumaro[default]
Read full installation instructions in the user manual.
Usage
There are several options available:
Standalone tool
Datuaro as a standalone tool allows to do various dataset operations from the command line interface:
datum --help
python -m datumaro --help
Python module
Datumaro can be used in custom scripts as a Python module. Used this way, it allows to use its features from an existing codebase, enabling dataset reading, exporting and iteration capabilities, simplifying integration of custom formats and providing high performance operations:
import datumaro as dm
dataset = dm.Dataset.import_from('path/', 'voc')
# keep only annotated images
dataset.select(lambda item: len(item.annotations) != 0)
# change dataset labels and corresponding annotations
dataset.transform('remap_labels',
mapping={
'cat': 'dog', # rename cat to dog
'truck': 'car', # rename truck to car
'person': '', # remove this label
},
default='delete') # remove everything else
# iterate over the dataset elements
for item in dataset:
print(item.id, item.annotations)
# export the resulting dataset in COCO format
dataset.export('dst/dir', 'coco', save_images=True)
List of components with the comfortable importing.
Check our developer manual for additional information.
Examples
-
Convert PASCAL VOC dataset to COCO format, keep only images with
cat
class presented:# Download VOC dataset: # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar datum convert --input-format voc --input-path <path/to/voc> \ --output-format coco \ --filter '/item[annotation/label="cat"]' \ -- --reindex 1 # avoid annotation id conflicts
-
Convert only non-
occluded
annotations from a CVAT project to TFrecord:# export Datumaro dataset in CVAT UI, extract somewhere, go to the project dir datum filter -e '/item/annotation[occluded="False"]' --mode items+anno datum export --format tf_detection_api -- --save-images
-
Annotate MS COCO dataset, extract image subset, re-annotate it in CVAT, update old dataset:
# Download COCO dataset http://cocodataset.org/#download # Put images to coco/images/ and annotations to coco/annotations/ datum create datum import --format coco <path/to/coco> datum export --filter '/image[images_I_dont_like]' --format cvat # import dataset and images to CVAT, re-annotate # export Datumaro project, extract to 'reannotation-upd' datum project update reannotation-upd datum export --format coco
-
Annotate instance polygons in CVAT, export as masks in COCO:
datum convert --input-format cvat --input-path <path/to/cvat.xml> \ --output-format coco -- --segmentation-mode masks
-
Apply an OpenVINO detection model to some COCO-like dataset, then compare annotations with ground truth and visualize in TensorBoard:
datum create datum import --format coco <path/to/coco> # create model results interpretation script datum model add -n mymodel openvino \ --weights model.bin --description model.xml \ --interpretation-script parse_results.py datum model run --model -n mymodel --output-dir mymodel_inference/ datum diff mymodel_inference/ --format tensorboard --output-dir diff
-
Change colors in PASCAL VOC-like
.png
masks:datum create datum import --format voc <path/to/voc/dataset> # Create a color map file with desired colors: # # label : color_rgb : parts : actions # cat:0,0,255:: # dog:255,0,0:: # # Save as mycolormap.txt datum export --format voc_segmentation -- --label-map mycolormap.txt # add "--apply-colormap=0" to save grayscale (indexed) masks # check "--help" option for more info # use "datum --loglevel debug" for extra conversion info
-
Create a custom COCO-like dataset:
import numpy as np import datumaro as dm dataset = dm.Dataset([ dm.DatasetItem(id='image1', subset='train', image=np.ones((5, 5, 3)), annotations=[ dm.Bbox(1, 2, 3, 4, label=0), ] ), # ... ], categories=['cat', 'dog']) dataset.export('test_dataset/', 'coco')