OpenVINO™ Inference Interpreter
Models supported from interpreter samples
There are detection and image classification examples.
-
Detection (SSD-based)
-
Intel Pre-trained Models > Object Detection
-
Public Pre-Trained Models(OMZ) > Object Detection
-
-
Image Classification
- Public Pre-Trained Models(OMZ) > Classification
You can find more OpenVINO™ Trained Models here To run the inference with OpenVINO™, the model format should be Intermediate Representation(IR). For the Caffe/TensorFlow/MXNet/Kaldi/ONNX models, please see the Model Conversion Instruction
You need to implement your own interpreter samples to support the other OpenVINO™ Trained Models.
Model download
Prerequisites:
- OpenVINO™ (To install OpenVINO™, please see the OpenVINO™ Installation Instruction)
- OpenVINO™ models (To download OpenVINO™ models, please see the Model Downloader Instruction)
- PASCAL VOC 2012 dataset (To download VOC 2012 dataset, please go VOC2012 download)
Open Model Zoo models can be downloaded with the Model Downloader tool from OpenVINO™ distribution:
cd <openvino_dir>/deployment_tools/open_model_zoo/tools/downloader
./downloader.py --name <model_name>
Example: download the “face-detection-0200” model
cd /opt/intel/openvino/deployment_tools/open_model_zoo/tools/downloader
./downloader.py --name face-detection-0200
Model inference
Prerequisites:
- OpenVINO™ (To install OpenVINO™, please see the OpenVINO™ Installation Instruction)
- Datumaro (To install Datumaro, please see the User Manual)
- OpenVINO™ models (To download OpenVINO™ models, please see the Model Downloader Instruction)
- PASCAL VOC 2012 dataset (To download VOC 2012 dataset, please go VOC2012 download)
Examples
To run the inference with OpenVINO™ models and the interpreter samples, please follow the instructions below.
source <openvino_dir>/bin/setupvars.sh
datum create -o <proj_dir>
datum model add -l <launcher> -p <proj_dir> --copy -- \
-d <path/to/xml> -w <path/to/bin> -i <path/to/interpreter/script>
datum import -p <proj_dir> -f <format> <path_to_dataset>
datum model run -p <proj_dir> -m model-0
Detection: ssd_mobilenet_v2_coco
source /opt/intel/openvino/bin/setupvars.sh
cd datumaro/plugins/openvino_plugin
datum create -o proj
datum model add -l openvino -p proj --copy -- \
--output-layers=do_ExpandDims_conf/sigmoid \
-d model/ssd_mobilenet_v2_coco.xml \
-w model/ssd_mobilenet_v2_coco.bin \
-i samples/ssd_mobilenet_coco_detection_interp.py
datum import -p proj -f voc VOCdevkit/
datum model run -p proj -m model-0
Classification: mobilenet-v2-pytorch
source /opt/intel/openvino/bin/setupvars.sh
cd datumaro/plugins/openvino_plugin
datum create -o proj
datum model add -l openvino -p proj --copy -- \
-d model/mobilenet-v2-pytorch.xml \
-w model/mobilenet-v2-pytorch.bin \
-i samples/mobilenet_v2_pytorch_interp.py
datum import -p proj -f voc VOCdevkit/
datum model run -p proj -m model-0