Supported Formats
List of supported formats:
- ADE20k (v2017) (import-only)
- ADE20k (v2020) (import-only)
- Align CelebA (
classification,landmarks) (import-only) - BraTS (
segmentation) (import-only) - BraTS Numpy (
detection,segmentation) (import-only) - CamVid (
segmentation) - CelebA (
classification,detection,landmarks) (import-only) - CIFAR-10/100 (
classification(python version)) - Cityscapes (
segmentation) - Common Semantic Segmentation (
segmentation) - Common Super Resolution
- CVAT (
for images,for video(import-only)) - ICDAR13/15 (
word_recognition,text_localization,text_segmentation) - ImageNet (
classification,detection)- Dataset example
- Dataset example (txt for classification)
- Detection format is the same as in PASCAL VOC
- Format documentation
- KITTI (
segmentation,detection) - KITTI 3D (
raw/tracklets/velodyne points) - Kinetics 400/600/700
- LabelMe (
labels,boxes,masks) - LFW (
classification,person re-identification,landmarks) - Mapillary Vistas (import-only)
- Market-1501 (
person re-identification) - MARS (import-only)
- MNIST (
classification) - MNIST in CSV (
classification) - MOT sequences
- MOTS (png)
- MPII Human Pose Dataset (
detection,pose estimation) (import-only) - MPII Human Pose Dataset (JSON) (
detection,pose estimation) (import-only) - MS COCO (
image_info,instances,person_keypoints,captions,labels,panoptic,stuff)- Format specification
- Dataset example
labelsare our extension - likeinstanceswith onlycategory_id- Format documentation
- NYU Depth Dataset V2 (
depth estimation) (import-only) - Open Images (
classification,detection,segmentation) - PASCAL VOC (
classification,detection,segmentation(class, instances),action_classification,person_layout) - Supervisely (
pointcloud) - SYNTHIA (
segmentation) (import-only) - TF Detection API (
bboxes,masks)- Format specifications: bboxes, masks
- Dataset example
- VGGFace2 (
landmarks,bboxes) - VoTT CSV (
detection) (import-only) - VoTT JSON (
detection) (import-only) - WIDER Face (
bboxes) - YOLO (
bboxes)
Supported annotation types
- Labels
- Bounding boxes
- Polygons
- Polylines
- (Segmentation) Masks
- (Key-)Points
- Captions
- 3D cuboids
- Super Resolution Annotation
- Depth Annotation
Datumaro does not separate datasets by tasks like classification, detection etc. Instead, datasets can have any annotations. When a dataset is exported in a specific format, only relevant annotations are exported.
Dataset meta info file
It is possible to use classes that are not original to the format.
To do this, use dataset_meta.json.
{
"label_map": {"0": "background", "1": "car", "2": "person"},
"segmentation_colors": [[0, 0, 0], [255, 0, 0], [0, 0, 255]],
"background_label": "0"
}
label_mapis a dictionary where the class ID is the key and the class name is the value.segmentation_colorsis a list of channel-wise values for each class. This is only necessary for the segmentation task.background_labelis a background label ID in the dataset.