KITTI
Format specification
The KITTI dataset has many annotations for different tasks. Datumaro supports only few of them.
Supported tasks / formats:
- Object Detection -
kitti_detection
The format specification is available inREADME.md
here. - Segmentation -
kitti_segmentation
The format specification is available inREADME.md
here. - Raw 3D / Velodyne Points - described here
Supported annotation types:
Bbox
(object detection)Mask
(segmentation)
Supported attributes:
truncated
(boolean) - indicates that the bounding box specified for the object does not correspond to the full extent of the objectoccluded
(boolean) - indicates that a significant portion of the object within the bounding box is occluded by another object
Load KITTI dataset
The KITTI left color images for object detection are available here. The KITTI object detection labels are available here. The KITTI segmentation dataset is available here.
There are two ways to create Datumaro project and add KITTI dataset to it:
datum import --format kitti --input-path <path/to/dataset>
# or
datum create
datum add path -f kitti <path/to/dataset>
It is possible to specify project name and project directory run
datum create --help
for more information.
KITTI segmentation dataset directory should have the following structure:
└─ Dataset/
├── testing/
│ └── image_2/
│ ├── <name_1>.<img_ext>
│ ├── <name_2>.<img_ext>
│ └── ...
└── training/
├── image_2/ # left color camera images
│ ├── <name_1>.<img_ext>
│ ├── <name_2>.<img_ext>
│ └── ...
├── label_2/ # left color camera label files
│ ├── <name_1>.txt
│ ├── <name_2>.txt
│ └── ...
├── instance/ # instance segmentation masks
│ ├── <name_1>.png
│ ├── <name_2>.png
│ └── ...
├── semantic/ # semantic segmentation masks (labels are encoded by its id)
│ ├── <name_1>.png
│ ├── <name_2>.png
│ └── ...
└── semantic_rgb/ # semantic segmentation masks (labels are encoded by its color)
├── <name_1>.png
├── <name_2>.png
└── ...
You can import dataset for specific tasks of KITTI dataset instead of the whole dataset, for example:
datum add path -f kitti_detection <path/to/dataset>
To make sure that the selected dataset has been added to the project, you can
run datum info
, which will display the project and dataset information.
Export to other formats
Datumaro can convert KITTI dataset into any other format Datumaro supports.
Such conversion will only be successful if the output
format can represent the type of dataset you want to convert,
e.g. segmentation annotations can be
saved in Cityscapes
format, but no as COCO keypoints
.
There are few ways to convert KITTI dataset to other dataset format:
datum project import -f kitti -i <path/to/kitti>
datum export -f cityscapes -o <path/to/output/dir>
# or
datum convert -if kitti -i <path/to/kitti> -f cityscapes -o <path/to/output/dir>
Some formats provide extra options for conversion.
These options are passed after double dash (--
) in the command line.
To get information about them, run
datum export -f <FORMAT> -- -h
Export to KITTI
There are few ways to convert dataset to KITTI format:
# export dataset into KITTI format from existing project
datum export -p <path/to/project> -f kitti -o <path/to/export/dir> \
-- --save-images
# converting to KITTI format from other format
datum convert -if cityscapes -i <path/to/cityscapes/dataset> \
-f kitti -o <path/to/export/dir> -- --save-images
Extra options for export to KITTI format:
--save-images
allow to export dataset with saving images (by defaultFalse
);--image-ext IMAGE_EXT
allow to specify image extension for exporting dataset (by default - keep original or use.png
, if none).--apply-colormap APPLY_COLORMAP
allow to use colormap for class masks (in foldersemantic_rgb
, by defaultTrue
);--label_map
allow to define a custom colormap. Example
# mycolormap.txt :
# 0 0 255 sky
# 255 0 0 person
#...
datum export -f kitti -- --label-map mycolormap.txt
# or you can use original kitti colomap:
datum export -f kitti -- --label-map kitti
--tasks TASKS
allow to specify tasks for export dataset, by default Datumaro uses all tasks. Example:
datum import -o project -f kitti -i <dataset>
datum export -p project -f kitti -- --tasks detection
--allow-attributes ALLOW_ATTRIBUTES
allow export of attributes (by defaultTrue
).
Examples
Datumaro supports filtering, transformation, merging etc. for all formats and for the KITTI format in particular. Follow user manual to get more information about these operations.
There are few examples of using Datumaro operations to solve particular problems with KITTI dataset:
Example 1. How to load an original KITTI dataset and convert to Cityscapes
datum create -o project
datum add path -p project -f kitti ./KITTI/
datum stats -p project
datum export -p final_project -o dataset -f cityscapes -- --save-images
Example 2. How to create custom KITTI-like dataset
import numpy as np
from datumaro.components.dataset import Dataset
from datumaro.components.extractor import Mask, DatasetItem
import datumaro.plugins.kitti_format as KITTI
label_map = {}
label_map['background'] = (0, 0, 0)
label_map['label_1'] = (1, 2, 3)
label_map['label_2'] = (3, 2, 1)
categories = KITTI.make_kitti_categories(label_map)
dataset = Dataset.from_iterable([
DatasetItem(id=1,
image=np.ones((1, 5, 3)),
annotations=[
Mask(image=np.array([[1, 0, 0, 1, 1]]), label=1, id=0,
attributes={'is_crowd': False}),
Mask(image=np.array([[0, 1, 1, 0, 0]]), label=2, id=0,
attributes={'is_crowd': False}),
]
),
], categories=categories)
dataset.export('./dataset', format='kitti')
Examples of using this format from the code can be found in the format tests