YOLO
Format specification
-
The YOLO dataset format is for training and validating object detection models. Specification for this format available here. And also you can find some official examples on working with YOLO dataset here;
-
The YOLO dataset format support the following types of annotations:
Bounding boxes
-
YOLO format doesn’t support attributes for annotations;
-
The format only supports subsets named
train
orvalid
.
Load YOLO dataset
Few ways to create Datumaro project and add YOLO dataset to it:
datum import -o project -f yolo -i <path/to/yolo/dataset>
# another way to do the same:
datum create -o project
datum add path -p project -f yolo -i <path/to/yolo/dataset>
# and you can add another one yolo dataset:
datum add path -p project -f yolo -i <path/to/other/yolo/dataset>
YOLO dataset directory should have the following structure:
└─ yolo_dataset/
│
├── obj.names # file with list of classes
├── obj.data # file with dataset information
├── train.txt # list of image paths in train subset
├── valid.txt # list of image paths in valid subset
│
├── obj_train_data/ # directory with annotations and images for train subset
│ ├── image1.txt # list of labeled bounding boxes for image1
│ ├── image1.jpg
│ ├── image2.txt
│ ├── image2.jpg
│ ├── ...
│
├── obj_valid_data/ # directory with annotations and images for valid subset
│ ├── image101.txt
│ ├── image101.jpg
│ ├── image102.txt
│ ├── image102.jpg
│ ├── ...
YOLO dataset cannot contain a subset with a name other than
train
orvalid
. If imported dataset contains such subsets, they will be ignored. If you are exporting a project into yolo format, all subsets different fromtrain
andvalid
will be skipped. If there is no subset separation in a project, the data will be saved intrain
subset.
obj.data
should have the following content, it is not necessary to have both subsets, but necessary to have one of them:
classes = 5 # optional
names = <path/to/obj.names>
train = <path/to/train.txt>
valid = <path/to/valid.txt>
backup = backup/ # optional
obj.names
contain list of classes. The line number for the class is the same as its index:
label1 # label1 has index 0
label2 # label2 has index 1
label3 # label2 has index 2
...
- Files
train.txt
andvalid.txt
should have the following structure:
<path/to/image1.jpg>
<path/to/image2.jpg>
...
- Files in directories
obj_train_data/
andobj_valid_data/
should contain information about labeled bounding boxes for images:
# image1.txt:
# <label_index> <x_center> <y_center> <width> <height>
0 0.250000 0.400000 0.300000 0.400000
3 0.600000 0.400000 0.400000 0.266667
Here x_center
, y_center
, width
, and height
are relative to the image’s
width and height. The x_center
and y_center
are center of rectangle
(are not top-left corner).
Export to other formats
Datumaro can convert YOLO dataset into any other format Datumaro supports. For successful conversion the output format should support object detection task (e.g. Pascal VOC, COCO, TF Detection API etc.)
Examples:
datum import -o project -f yolo -i <path/to/yolo/dataset>
datum export -p project -f voc -o <path/to/output/voc/dataset>
datum convert -if yolo -i <path/to/yolo/dataset> \
-f coco_instances -o <path/to/output/coco/dataset>
Export to YOLO format
Datumaro can convert an existing dataset to YOLO format, if the dataset supports object detection task.
Example:
datum import -p project -f coco_instances -i <path/to/coco/dataset>
datum export -p project -f yolo -o <path/to/output/yolo/dataset> -- --save-images
Extra options for export to YOLO format:
--save-images
allow to export dataset with saving images (default:False
);--image-ext <IMAGE_EXT>
allow to specify image extension for exporting dataset (default: use original or.jpg
, if none).
Examples
Example 1. Prepare PASCAL VOC dataset for exporting to YOLO format dataset
datum import -o project -f voc -i ./VOC2012
datum filter -p project -e '/item[subset="train" or subset="val"]' -o trainval_voc
datum transform -p trainval_voc -o trainvalid_voc \
-t map_subsets -- -s train:train -s val:valid
datum export -p trainvalid_voc -f yolo -o ./yolo_dataset -- --save-images
Example 2. Remove some class from YOLO dataset
Delete all items, which contain cat
objects and remove
cat
from list of classes:
datum import -o project -f yolo -i ./yolo_dataset
datum filter -p project -o filtered -m i+a -e '/item/annotation[label!="cat"]'
datum transform -p filtered -o without_cat -t remap_labels -- -l cat:
datum export -p without_cat -f yolo -o ./yolo_without_cats
Example 3. Create custom dataset in YOLO format
import numpy as np
from datumaro.components.dataset import Dataset
from datumaro.components.extractor import Bbox, DatasetItem
dataset = Dataset.from_iterable([
DatasetItem(id='image_001', subset='train',
image=np.ones((20, 20, 3)),
annotations=[
Bbox(3.0, 1.0, 8.0, 5.0, label=1),
Bbox(1.0, 1.0, 10.0, 1.0, label=2)
]
),
DatasetItem(id='image_002', subset='train',
image=np.ones((15, 10, 3)),
annotations=[
Bbox(4.0, 4.0, 4.0, 4.0, label=3)
]
)
], categories=['house', 'bridge', 'crosswalk', 'traffic_light'])
dataset.export('../yolo_dataset', format='yolo', save_images=True)
Example 4. Get information about objects on each image
If you only want information about label names for each images, then you can get it from code:
from datumaro.components.dataset import Dataset
from datumaro.components.extractor import AnnotationType
dataset = Dataset.import_from('./yolo_dataset', format='yolo')
cats = dataset.categories()[AnnotationType.label]
for item in dataset:
for ann in item.annotations:
print(item.id, cats[ann.label].name)
And If you want complete information about each items you can run:
datum import -o project -f yolo -i ./yolo_dataset
datum filter -p project --dry-run -e '/item'