1 - OpenVINO™ Inference Interpreter
Interpreter samples to parse OpenVINO™ inference outputs. This section on GitHub
Models supported from interpreter samples
There are detection and image classification examples.
-
Detection (SSD-based)
-
Intel Pre-trained Models > Object Detection
-
Public Pre-Trained Models(OMZ) > Object Detection
-
-
Image Classification
- Public Pre-Trained Models(OMZ) > Classification
You can find more OpenVINO™ Trained Models here To run the inference with OpenVINO™, the model format should be Intermediate Representation(IR). For the Caffe/TensorFlow/MXNet/Kaldi/ONNX models, please see the Model Conversion Instruction
You need to implement your own interpreter samples to support the other OpenVINO™ Trained Models.
Model download
-
Prerequisites
- OpenVINO™ (To install OpenVINO™, please see the OpenVINO™ Installation Instruction)
- OpenVINO™ models (To download OpenVINO™ models, please see the Model Downloader Instruction)
- PASCAL VOC 2012 dataset (To download VOC 2012 dataset, please go VOC2012 download)
# cd <openvino_dir>/deployment_tools/open_model_zoo/tools/downloader # ./downloader.py --name <model_name> # # Examples cd /opt/intel/openvino/deployment_tools/open_model_zoo/tools/downloader ./downloader.py --name face-detection-0200
Model inference
-
Prerequisites:
- OpenVINO™ (To install OpenVINO™, please see the OpenVINO™ Installation Instruction)
- Datumaro (To install Datumaro, please see the User Manual)
- OpenVINO™ models (To download OpenVINO™ models, please see the Model Downloader Instruction)
- PASCAL VOC 2012 dataset (To download VOC 2012 dataset, please go VOC2012 download)
-
To run the inference with OpenVINO™ models and the interpreter samples, please follow the instructions below.
# source <openvino_dir>/bin/setupvars.sh # datum create -o <proj_dir> # datum model add -l <launcher> -p <proj_dir> --copy -- -d <path_to_xml> -w <path_to_bin> -i <path_to_interpreter_script> # datum add path -p <proj_dir> -f <format> <path_to_dataset> # datum model run -p <proj_dir> -m model-0 # # Examples # Detection> ssd_mobilenet_v2_coco source /opt/intel/openvino/bin/setupvars.sh cd datumaro/plugins/openvino_plugin datum create -o proj_ssd_mobilenet_v2_coco_detection datum model add -l openvino -p proj_ssd_mobilenet_v2_coco_detection --copy -- \ --output-layers=do_ExpandDims_conf/sigmoid \ -d model/ssd_mobilenet_v2_coco.xml \ -w model/ssd_mobilenet_v2_coco.bin \ -i samples/ssd_mobilenet_coco_detection_interp.py datum add path -p proj_ssd_mobilenet_v2_coco_detection -f voc VOCdevkit/ datum model run -p proj_ssd_mobilenet_v2_coco_detection -m model-0 # Classification> mobilenet-v2-pytorch source /opt/intel/openvino/bin/setupvars.sh cd datumaro/plugins/openvino_plugin datum create -o proj_mobilenet_v2_classification datum model add -l openvino -p proj_mobilenet_v2_classification --copy -- \ -d model/mobilenet-v2-pytorch.xml \ -w model/mobilenet-v2-pytorch.bin \ -i samples/mobilenet_v2_pytorch_interp.py datum add path -p proj_mobilenet_v2_classification -f voc VOCdevkit/ datum model run -p proj_mobilenet_v2_classification -m model-0