Source code for datumaro.plugins.yolo_format.converter

# Copyright (C) 2019-2021 Intel Corporation
#
# SPDX-License-Identifier: MIT

from collections import OrderedDict
import logging as log
import os
import os.path as osp

from datumaro.components.annotation import AnnotationType
from datumaro.components.converter import Converter
from datumaro.components.dataset import ItemStatus
from datumaro.components.extractor import DEFAULT_SUBSET_NAME, DatasetItem

from .format import YoloPath


def _make_yolo_bbox(img_size, box):
    # https://github.com/pjreddie/darknet/blob/master/scripts/voc_label.py
    # <x> <y> <width> <height> - values relative to width and height of image
    # <x> <y> - are center of rectangle
    x = (box[0] + box[2]) / 2 / img_size[0]
    y = (box[1] + box[3]) / 2 / img_size[1]
    w = (box[2] - box[0]) / img_size[0]
    h = (box[3] - box[1]) / img_size[1]
    return x, y, w, h

[docs]class YoloConverter(Converter): # https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects DEFAULT_IMAGE_EXT = '.jpg'
[docs] def apply(self): extractor = self._extractor save_dir = self._save_dir os.makedirs(save_dir, exist_ok=True) if self._save_dataset_meta: self._save_meta_file(self._save_dir) label_categories = extractor.categories()[AnnotationType.label] label_ids = {label.name: idx for idx, label in enumerate(label_categories.items)} with open(osp.join(save_dir, 'obj.names'), 'w', encoding='utf-8') as f: f.writelines('%s\n' % l[0] for l in sorted(label_ids.items(), key=lambda x: x[1])) subset_lists = OrderedDict() for subset_name, subset in self._extractor.subsets().items(): if not subset_name or subset_name == DEFAULT_SUBSET_NAME: subset_name = YoloPath.DEFAULT_SUBSET_NAME elif subset_name not in YoloPath.SUBSET_NAMES: log.warning("Skipping subset export '%s'. " "If specified, the only valid names are %s" % \ (subset_name, ', '.join( "'%s'" % s for s in YoloPath.SUBSET_NAMES))) continue subset_dir = osp.join(save_dir, 'obj_%s_data' % subset_name) os.makedirs(subset_dir, exist_ok=True) image_paths = OrderedDict() for item in subset: if not item.has_image: raise Exception("Failed to export item '%s': " "item has no image info" % item.id) height, width = item.image.size image_name = self._make_image_filename(item) if self._save_images: if item.has_image and item.image.has_data: self._save_image(item, osp.join(subset_dir, image_name)) else: log.warning("Item '%s' has no image" % item.id) image_paths[item.id] = osp.join('data', osp.basename(subset_dir), image_name) yolo_annotation = '' for bbox in item.annotations: if bbox.type is not AnnotationType.bbox: continue if bbox.label is None: continue yolo_bb = _make_yolo_bbox((width, height), bbox.points) yolo_bb = ' '.join('%.6f' % p for p in yolo_bb) yolo_annotation += '%s %s\n' % (bbox.label, yolo_bb) annotation_path = osp.join(subset_dir, '%s.txt' % item.id) os.makedirs(osp.dirname(annotation_path), exist_ok=True) with open(annotation_path, 'w', encoding='utf-8') as f: f.write(yolo_annotation) subset_list_name = '%s.txt' % subset_name subset_list_path = osp.join(save_dir, subset_list_name) if self._patch and subset_name in self._patch.updated_subsets and \ not image_paths: if osp.isfile(subset_list_path): os.remove(subset_list_path) continue subset_lists[subset_name] = subset_list_name with open(subset_list_path, 'w', encoding='utf-8') as f: f.writelines('%s\n' % s for s in image_paths.values()) with open(osp.join(save_dir, 'obj.data'), 'w', encoding='utf-8') as f: f.write('classes = %s\n' % len(label_ids)) for subset_name, subset_list_name in subset_lists.items(): f.write('%s = %s\n' % (subset_name, osp.join('data', subset_list_name))) f.write('names = %s\n' % osp.join('data', 'obj.names')) f.write('backup = backup/\n')
[docs] @classmethod def patch(cls, dataset, patch, save_dir, **kwargs): conv = cls(dataset, save_dir=save_dir, **kwargs) conv._patch = patch conv.apply() for (item_id, subset), status in patch.updated_items.items(): if status != ItemStatus.removed: item = patch.data.get(item_id, subset) else: item = DatasetItem(item_id, subset=subset) if not (status == ItemStatus.removed or not item.has_image): continue if subset == DEFAULT_SUBSET_NAME: subset = YoloPath.DEFAULT_SUBSET_NAME subset_dir = osp.join(save_dir, 'obj_%s_data' % subset) image_path = osp.join(subset_dir, conv._make_image_filename(item)) if osp.isfile(image_path): os.remove(image_path) ann_path = osp.join(subset_dir, '%s.txt' % item.id) if osp.isfile(ann_path): os.remove(ann_path)