# Copyright (C) 2020-2022 Intel Corporation
# Copyright (C) 2022 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
import argparse
import logging as log
import os.path as osp
import random
import re
from collections import Counter
from copy import deepcopy
from enum import Enum, auto
from itertools import chain
from typing import Dict, Iterable, List, Optional, Tuple, Union
import cv2
import numpy as np
import pycocotools.mask as mask_utils
import datumaro.util.mask_tools as mask_tools
from datumaro.components.annotation import (
AnnotationType,
Bbox,
Caption,
Label,
LabelCategories,
Mask,
MaskCategories,
Points,
PointsCategories,
Polygon,
PolyLine,
RleMask,
)
from datumaro.components.cli_plugin import CliPlugin
from datumaro.components.errors import DatumaroError
from datumaro.components.extractor import (
DEFAULT_SUBSET_NAME,
DatasetItem,
IExtractor,
ItemTransform,
Transform,
)
from datumaro.components.media import Image
from datumaro.util import NOTSET, filter_dict, parse_str_enum_value, take_by
from datumaro.util.annotation_util import find_group_leader, find_instances
[docs]class CropCoveredSegments(ItemTransform, CliPlugin):
"""
Sorts polygons and masks ("segments") according to `z_order`,
crops covered areas of underlying segments. If a segment is split
into several independent parts by the segments above, produces
the corresponding number of separate annotations joined into a group.
"""
[docs] @classmethod
def crop_segments(cls, segment_anns, img_width, img_height):
segment_anns = sorted(segment_anns, key=lambda x: x.z_order)
segments = []
for s in segment_anns:
if s.type == AnnotationType.polygon:
segments.append(s.points)
elif s.type == AnnotationType.mask:
if isinstance(s, RleMask):
rle = s.rle
else:
rle = mask_tools.mask_to_rle(s.image)
segments.append(rle)
segments = mask_tools.crop_covered_segments(segments, img_width, img_height)
new_anns = []
for ann, new_segment in zip(segment_anns, segments):
fields = {
"z_order": ann.z_order,
"label": ann.label,
"id": ann.id,
"group": ann.group,
"attributes": ann.attributes,
}
if ann.type == AnnotationType.polygon:
if fields["group"] is None:
fields["group"] = cls._make_group_id(segment_anns + new_anns, fields["id"])
for polygon in new_segment:
new_anns.append(Polygon(points=polygon, **fields))
else:
rle = mask_tools.mask_to_rle(new_segment)
rle = mask_utils.frPyObjects(rle, *rle["size"])
new_anns.append(RleMask(rle=rle, **fields))
return new_anns
@staticmethod
def _make_group_id(anns, ann_id):
if ann_id:
return ann_id
max_gid = max(anns, default=0, key=lambda x: x.group)
return max_gid + 1
[docs]class MergeInstanceSegments(ItemTransform, CliPlugin):
"""
Replaces instance masks and, optionally, polygons with a single mask.
A group of annotations with the same group id is considered an "instance".
The largest annotation in the group is considered the group "head", so the
resulting mask takes properties from that annotation.
"""
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument("--include-polygons", action="store_true", help="Include polygons")
return parser
[docs] def __init__(self, extractor, include_polygons=False):
super().__init__(extractor)
self._include_polygons = include_polygons
[docs] @classmethod
def merge_segments(cls, instance, img_width, img_height, include_polygons=False):
polygons = [a for a in instance if a.type == AnnotationType.polygon]
masks = [a for a in instance if a.type == AnnotationType.mask]
if not polygons and not masks:
return []
if not polygons and len(masks) == 1:
return masks
leader = find_group_leader(polygons + masks)
instance = []
# Build the resulting mask
mask = None
if include_polygons and polygons:
polygons = [p.points for p in polygons]
mask = mask_tools.rles_to_mask(polygons, img_width, img_height)
else:
instance += polygons # keep unused polygons
if masks:
masks = (m.image for m in masks)
if mask is not None:
masks = chain(masks, [mask])
mask = mask_tools.merge_masks(masks)
if mask is None:
return instance
mask = mask_tools.mask_to_rle(mask)
mask = mask_utils.frPyObjects(mask, *mask["size"])
instance.append(
RleMask(
rle=mask,
label=leader.label,
z_order=leader.z_order,
id=leader.id,
attributes=leader.attributes,
group=leader.group,
)
)
return instance
[docs] @staticmethod
def find_instances(annotations):
return find_instances(
a for a in annotations if a.type in {AnnotationType.polygon, AnnotationType.mask}
)
[docs]class PolygonsToMasks(ItemTransform, CliPlugin):
[docs] @staticmethod
def convert_polygon(polygon, img_h, img_w):
rle = mask_utils.frPyObjects([polygon.points], img_h, img_w)[0]
return RleMask(
rle=rle,
label=polygon.label,
z_order=polygon.z_order,
id=polygon.id,
attributes=polygon.attributes,
group=polygon.group,
)
[docs]class BoxesToMasks(ItemTransform, CliPlugin):
[docs] @staticmethod
def convert_bbox(bbox, img_h, img_w):
rle = mask_utils.frPyObjects([bbox.as_polygon()], img_h, img_w)[0]
return RleMask(
rle=rle,
label=bbox.label,
z_order=bbox.z_order,
id=bbox.id,
attributes=bbox.attributes,
group=bbox.group,
)
[docs]class MasksToPolygons(ItemTransform, CliPlugin):
[docs] @staticmethod
def convert_mask(mask):
polygons = mask_tools.mask_to_polygons(mask.image)
return [
Polygon(
points=p,
label=mask.label,
z_order=mask.z_order,
id=mask.id,
attributes=mask.attributes,
group=mask.group,
)
for p in polygons
]
[docs]class ShapesToBoxes(ItemTransform, CliPlugin):
[docs] @staticmethod
def convert_shape(shape):
bbox = shape.get_bbox()
return Bbox(
*bbox,
label=shape.label,
z_order=shape.z_order,
id=shape.id,
attributes=shape.attributes,
group=shape.group,
)
[docs]class Reindex(Transform, CliPlugin):
"""
Replaces dataset item IDs with sequential indices.
"""
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument("-s", "--start", type=int, default=1, help="Start value for item ids")
return parser
[docs] def __init__(self, extractor, start=1):
super().__init__(extractor)
self._length = "parent"
self._start = start
[docs] def __iter__(self):
for i, item in enumerate(self._extractor):
yield self.wrap_item(item, id=i + self._start)
[docs]class MapSubsets(ItemTransform, CliPlugin):
"""
Renames subsets in the dataset.
"""
@staticmethod
def _mapping_arg(s):
parts = s.split(":")
if len(parts) != 2:
raise argparse.ArgumentTypeError()
return parts
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument(
"-s",
"--subset",
action="append",
type=cls._mapping_arg,
dest="mapping",
help="Subset mapping of the form: 'src:dst' (repeatable)",
)
return parser
[docs] def __init__(self, extractor, mapping=None):
super().__init__(extractor)
if mapping is None:
mapping = {}
elif not isinstance(mapping, dict):
mapping = dict(tuple(m) for m in mapping)
self._mapping = mapping
if extractor.subsets():
counts = Counter(mapping.get(s, s) or DEFAULT_SUBSET_NAME for s in extractor.subsets())
if all(c == 1 for c in counts.values()):
self._length = "parent"
self._subsets = set(counts)
[docs]class RandomSplit(Transform, CliPlugin):
"""
Joins all subsets into one and splits the result into few parts.
It is expected that item ids are unique and subset ratios sum up to 1.|n
|n
Example:|n
.. code-block::
|s|s|s|s%(prog)s --subset train:.67 --subset test:.33
"""
# avoid https://bugs.python.org/issue16399
_default_split = [("train", 0.67), ("test", 0.33)]
@staticmethod
def _split_arg(s):
parts = s.split(":")
if len(parts) != 2:
raise argparse.ArgumentTypeError()
return (parts[0], float(parts[1]))
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument(
"-s",
"--subset",
action="append",
type=cls._split_arg,
dest="splits",
help="Subsets in the form: '<subset>:<ratio>' "
"(repeatable, default: %s)" % dict(cls._default_split),
)
parser.add_argument("--seed", type=int, help="Random seed")
return parser
[docs] def __init__(self, extractor, splits, seed=None):
super().__init__(extractor)
if splits is None:
splits = self._default_split
assert 0 < len(splits), "Expected at least one split"
assert all(0.0 <= r and r <= 1.0 for _, r in splits), (
"Ratios are expected to be in the range [0; 1], but got %s" % splits
)
total_ratio = sum(s[1] for s in splits)
if not abs(total_ratio - 1.0) <= 1e-7:
raise Exception(
"Sum of ratios is expected to be 1, got %s, which is %s" % (splits, total_ratio)
)
dataset_size = len(extractor)
indices = list(range(dataset_size))
random.seed(seed)
random.shuffle(indices)
parts = []
s = 0
lower_boundary = 0
for split_idx, (subset, ratio) in enumerate(splits):
s += ratio
upper_boundary = int(s * dataset_size)
if split_idx == len(splits) - 1:
upper_boundary = dataset_size
subset_indices = set(indices[lower_boundary:upper_boundary])
parts.append((subset_indices, subset))
lower_boundary = upper_boundary
self._parts = parts
self._subsets = set(s[0] for s in splits)
self._length = "parent"
def _find_split(self, index):
for subset_indices, subset in self._parts:
if index in subset_indices:
return subset
return subset # all the possible remainder goes to the last split
[docs] def __iter__(self):
for i, item in enumerate(self._extractor):
yield self.wrap_item(item, subset=self._find_split(i))
[docs]class IdFromImageName(ItemTransform, CliPlugin):
"""
Renames items in the dataset using image file name (without extension).
"""
[docs]class Rename(ItemTransform, CliPlugin):
r"""
Renames items in the dataset. Supports regular expressions.
The first character in the expression is a delimiter for
the pattern and replacement parts. Replacement part can also
contain `str.format` replacement fields with the `item`
(of type `DatasetItem`) object available.|n
|n
Examples:|n
|s|s- Replace 'pattern' with 'replacement':|n
.. code-block::
|s|s|s|srename -e '|pattern|replacement|'|n
|n
|s|s- Remove 'frame_' from item ids:|n
.. code-block::
|s|s|s|srename -e '|^frame_||'|n
|n
|s|s- Rename by regex:|n
.. code-block::
|s|s|s|srename -e '|frame_(\d+)_extra|{item.subset}_id_\1|'
"""
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument(
"-e",
"--regex",
help="Regex for renaming in the form " "'<sep><search><sep><replacement><sep>'",
)
return parser
[docs] def __init__(self, extractor, regex):
super().__init__(extractor)
assert regex and isinstance(regex, str)
parts = regex.split(regex[0], maxsplit=3)
regex, sub = parts[1:3]
self._re = re.compile(regex)
self._sub = sub
[docs]class RemapLabels(ItemTransform, CliPlugin):
"""
Changes labels in the dataset.|n
|n
A label can be:|n
|s|s- renamed (and joined with existing) -|n
|s|s|s|swhen '--label <old_name>:<new_name>' is specified|n
|s|s- deleted - when '--label <name>:' is specified, or default action |n
|s|s|s|sis 'delete' and the label is not mentioned in the list. |n
|s|s|s|sWhen a label is deleted, all the associated annotations are removed|n
|s|s- kept unchanged - when specified '--label <name>:<name>'|n
|s|s|s|sor default action is 'keep' and the label is not mentioned in the list.|n
|n
Annotations with no label are managed by the default action policy.|n
|n
Examples:|n
|n
|s|s- Remove the 'person' label (and corresponding annotations):|n
|s|s.. code-block::
|s|s|s|s%(prog)s -l person: --default keep|n
|n
|s|s- Rename 'person' to 'pedestrian' and 'human' to 'pedestrian', join:|n
|s|s.. code-block::
|s|s|s|s%(prog)s -l person:pedestrian -l human:pedestrian --default keep|n
|n
|s|s- Rename 'person' to 'car' and 'cat' to 'dog', keep 'bus', remove others:|n
|s|s.. code-block::
|s|s|s|s%(prog)s -l person:car -l bus:bus -l cat:dog --default delete
"""
[docs] class DefaultAction(Enum):
keep = auto()
delete = auto()
@staticmethod
def _split_arg(s):
parts = s.split(":")
if len(parts) != 2:
raise argparse.ArgumentTypeError()
return (parts[0], parts[1])
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument(
"-l",
"--label",
action="append",
type=cls._split_arg,
dest="mapping",
help="Label in the form of: '<src>:<dst>' (repeatable)",
)
parser.add_argument(
"--default",
choices=[a.name for a in cls.DefaultAction],
default=cls.DefaultAction.keep.name,
help="Action for unspecified labels (default: %(default)s)",
)
return parser
[docs] def __init__(
self,
extractor: IExtractor,
mapping: Union[Dict[str, str], List[Tuple[str, str]]],
default: Union[None, str, DefaultAction] = None,
):
super().__init__(extractor)
default = parse_str_enum_value(default, self.DefaultAction, self.DefaultAction.keep)
self._default_action = default
assert isinstance(mapping, (dict, list))
if isinstance(mapping, list):
mapping = dict(mapping)
self._categories = {}
src_categories = self._extractor.categories()
src_label_cat = src_categories.get(AnnotationType.label)
if src_label_cat is not None:
self._make_label_id_map(src_label_cat, mapping, default)
src_mask_cat = src_categories.get(AnnotationType.mask)
if src_mask_cat is not None:
assert src_label_cat is not None
dst_mask_cat = MaskCategories(attributes=deepcopy(src_mask_cat.attributes))
for old_id, old_color in src_mask_cat.colormap.items():
new_id = self._map_id(old_id)
if new_id is not None and new_id not in dst_mask_cat:
dst_mask_cat.colormap[new_id] = deepcopy(old_color)
self._categories[AnnotationType.mask] = dst_mask_cat
src_point_cat = src_categories.get(AnnotationType.points)
if src_point_cat is not None:
assert src_label_cat is not None
dst_point_cat = PointsCategories(attributes=deepcopy(src_point_cat.attributes))
for old_id, old_cat in src_point_cat.items.items():
new_id = self._map_id(old_id)
if new_id is not None and new_id not in dst_point_cat:
dst_point_cat.items[new_id] = deepcopy(old_cat)
self._categories[AnnotationType.points] = dst_point_cat
assert len(self._categories) == len(src_categories)
def _make_label_id_map(self, src_label_cat, label_mapping, default_action):
dst_label_cat = LabelCategories(attributes=deepcopy(src_label_cat.attributes))
id_mapping = {}
for src_index, src_label in enumerate(src_label_cat.items):
dst_label = label_mapping.get(src_label.name, NOTSET)
if dst_label is NOTSET and default_action == self.DefaultAction.keep:
dst_label = src_label.name # keep unspecified as is
elif not dst_label or dst_label is NOTSET:
continue
dst_index = dst_label_cat.find(dst_label)[0]
if dst_index is None:
dst_index = dst_label_cat.add(
dst_label, src_label.parent, deepcopy(src_label.attributes)
)
id_mapping[src_index] = dst_index
if log.getLogger().isEnabledFor(log.DEBUG):
log.debug("Label mapping:")
for src_id, src_label in enumerate(src_label_cat.items):
if id_mapping.get(src_id) is not None:
log.debug(
"#%s '%s' -> #%s '%s'",
src_id,
src_label.name,
id_mapping[src_id],
dst_label_cat.items[id_mapping[src_id]].name,
)
else:
log.debug("#%s '%s' -> <deleted>", src_id, src_label.name)
self._map_id = lambda src_id: id_mapping.get(src_id, None)
for label in dst_label_cat:
if label.parent not in dst_label_cat:
label.parent = ""
self._categories[AnnotationType.label] = dst_label_cat
[docs] def categories(self):
return self._categories
[docs]class ProjectLabels(ItemTransform):
"""
Changes the order of labels in the dataset from the existing
to the desired one, removes unknown labels and adds new labels.
Updates or removes the corresponding annotations.|n
|n
Labels are matched by names (case dependent). Parent labels are only kept
if they are present in the resulting set of labels. If new labels are
added, and the dataset has mask colors defined, new labels will obtain
generated colors.|n
|n
Useful for merging similar datasets, whose labels need to be aligned.|n
|n
Examples:|n
|s|s- Align the source dataset labels to [person, cat, dog]:|n
|s|s.. code-block::
|s|s|s|s%(prog)s -l person -l cat -l dog
"""
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument(
"-l",
"--label",
action="append",
dest="dst_labels",
help="Label name (repeatable, ordered)",
)
return parser
[docs] def __init__(
self,
extractor: IExtractor,
dst_labels: Union[Iterable[Union[str, Tuple[str, str]]], LabelCategories],
):
super().__init__(extractor)
self._categories = {}
src_categories = self._extractor.categories()
src_label_cat = src_categories.get(AnnotationType.label)
if isinstance(dst_labels, LabelCategories):
dst_label_cat = deepcopy(dst_labels)
else:
dst_labels = list(dst_labels)
if src_label_cat:
dst_label_cat = LabelCategories(attributes=deepcopy(src_label_cat.attributes))
for dst_label in dst_labels:
assert isinstance(dst_label, str) or isinstance(dst_label, tuple)
dst_parent = ""
if isinstance(dst_label, tuple):
dst_label, dst_parent = dst_label
src_label = src_label_cat.find(dst_label, dst_parent)[1]
if src_label is not None:
dst_label_cat.add(
dst_label, src_label.parent, deepcopy(src_label.attributes)
)
else:
dst_label_cat.add(dst_label, dst_parent)
else:
dst_label_cat = LabelCategories.from_iterable(dst_labels)
for label in dst_label_cat:
if label.parent not in dst_label_cat:
label.parent = ""
self._categories[AnnotationType.label] = dst_label_cat
self._make_label_id_map(src_label_cat, dst_label_cat)
src_mask_cat = src_categories.get(AnnotationType.mask)
if src_mask_cat is not None:
assert src_label_cat is not None
dst_mask_cat = MaskCategories(attributes=deepcopy(src_mask_cat.attributes))
for old_id, old_color in src_mask_cat.colormap.items():
new_id = self._map_id(old_id)
if new_id is not None and new_id not in dst_mask_cat:
dst_mask_cat.colormap[new_id] = deepcopy(old_color)
# Generate new colors for new labels, keep old untouched
existing_colors = set(dst_mask_cat.colormap.values())
color_bank = iter(
mask_tools.generate_colormap(len(dst_label_cat), include_background=False).values()
)
for new_id, new_label in enumerate(dst_label_cat):
if new_label.name in src_label_cat:
continue
if new_id in dst_mask_cat:
continue
color = next(color_bank)
while color in existing_colors:
color = next(color_bank)
dst_mask_cat.colormap[new_id] = color
self._categories[AnnotationType.mask] = dst_mask_cat
src_point_cat = src_categories.get(AnnotationType.points)
if src_point_cat is not None:
assert src_label_cat is not None
dst_point_cat = PointsCategories(attributes=deepcopy(src_point_cat.attributes))
for old_id, old_cat in src_point_cat.items.items():
new_id = self._map_id(old_id)
if new_id is not None and new_id not in dst_point_cat:
dst_point_cat.items[new_id] = deepcopy(old_cat)
self._categories[AnnotationType.points] = dst_point_cat
def _make_label_id_map(self, src_label_cat, dst_label_cat):
id_mapping = {
src_id: dst_label_cat.find(src_label_cat[src_id].name, src_label_cat[src_id].parent)[0]
for src_id in range(len(src_label_cat or ()))
}
self._map_id = lambda src_id: id_mapping.get(src_id, None)
[docs] def categories(self):
return self._categories
[docs]class AnnsToLabels(ItemTransform, CliPlugin):
"""
Collects all labels from annotations (of all types) and
transforms them into a set of annotations of type Label
"""
[docs]class BboxValuesDecrement(ItemTransform, CliPlugin):
"""
Subtracts one from the coordinates of bounding boxes
"""
[docs]class RemoveItems(ItemTransform):
"""
Allows to remove specific dataset items from dataset by their ids.|n
|n
Can be useful to clean the dataset from broken or unnecessary samples.|n
|n
Examples:|n
- Remove specific items from the dataset|n
.. code-block::
|s|s%(prog)s --id 'image1:train' --id 'image2:test'
"""
@staticmethod
def _parse_id(s):
full_id = s.split(":")
if len(full_id) != 2:
raise argparse.ArgumentTypeError(
None, message="Invalid id format of '%s'. " "Expected a 'name:subset' pair." % s
)
return full_id
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument(
"--id",
dest="ids",
type=cls._parse_id,
action="append",
required=True,
help="Item id to remove. Id is 'name:subset' pair (repeatable)",
)
return parser
[docs] def __init__(self, extractor: IExtractor, ids: Iterable[Tuple[str, str]]):
super().__init__(extractor)
self._ids = set(tuple(v) for v in (ids or []))
[docs]class RemoveAnnotations(ItemTransform):
"""
Allows to remove annotations on specific dataset items.|n
|n
Can be useful to clean the dataset from broken or unnecessary annotations.|n
|n
Examples:|n
- Remove annotations from specific items in the dataset|n
.. code-block::
|s|s%(prog)s --id 'image1:train' --id 'image2:test'
"""
@staticmethod
def _parse_id(s):
full_id = s.split(":")
if len(full_id) != 2:
raise argparse.ArgumentTypeError(
None, message="Invalid id format of '%s'. " "Expected a 'name:subset' pair." % s
)
return full_id
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument(
"--id",
dest="ids",
type=cls._parse_id,
action="append",
help="Image id to clean from annotations. "
"Id is 'name:subset' pair. If not specified, removes "
"all annotations (repeatable)",
)
return parser
[docs] def __init__(self, extractor: IExtractor, *, ids: Optional[Iterable[Tuple[str, str]]] = None):
super().__init__(extractor)
self._ids = set(tuple(v) for v in (ids or []))
[docs]class RemoveAttributes(ItemTransform):
"""
Allows to remove item and annotation attributes in a dataset.|n
|n
Can be useful to clean the dataset from broken or unnecessary attributes.|n
|n
Examples:|n
- Remove the `is_crowd` attribute from dataset|n
.. code-block::
|s|s%(prog)s --attr 'is_crowd'|n
|n
- Remove the `occluded` attribute from annotations of|n
|s|sthe `2010_001705` item in the `train` subset|n
.. code-block::
|s|s%(prog)s --id '2010_001705:train' --attr 'occluded'
"""
@staticmethod
def _parse_id(s):
full_id = s.split(":")
if len(full_id) != 2:
raise argparse.ArgumentTypeError(
None, message="Invalid id format of '%s'. " "Expected a 'name:subset' pair." % s
)
return full_id
[docs] @classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument(
"--id",
dest="ids",
type=cls._parse_id,
action="append",
help="Image id to clean from annotations. "
"Id is 'name:subset' pair. If not specified, "
"affects all images and annotations (repeatable)",
)
parser.add_argument(
"-a",
"--attr",
action="append",
dest="attributes",
help="Attribute name to be removed. If not specified, "
"removes all attributes (repeatable)",
)
return parser
[docs] def __init__(
self,
extractor: IExtractor,
ids: Optional[Iterable[Tuple[str, str]]] = None,
attributes: Optional[Iterable[str]] = None,
):
super().__init__(extractor)
self._ids = set(tuple(v) for v in (ids or []))
self._attributes = set(attributes or [])
def _filter_attrs(self, attrs):
if not self._attributes:
return None
else:
return filter_dict(attrs, exclude_keys=self._attributes)