Supported Formats
List of supported formats:
- MS COCO
(
image_info
,instances
,person_keypoints
,captions
,labels
,panoptic
,stuff
)- Format specification
- Dataset example
labels
are our extension - likeinstances
with onlycategory_id
- Format documentation
- PASCAL VOC (
classification
,detection
,segmentation
(class, instances),action_classification
,person_layout
) - YOLO (
bboxes
) - TF Detection API (
bboxes
,masks
)- Format specifications: bboxes, masks
- Dataset example
- WIDER Face (
bboxes
) - VGGFace2 (
landmarks
,bboxes
) - MOT sequences
- MOTS (png)
- ImageNet (
classification
,detection
)- Dataset example
- Dataset example (txt for classification)
- Detection format is the same as in PASCAL VOC
- CIFAR-10/100 (
classification
(python version)) - MNIST (
classification
) - MNIST in CSV (
classification
) - CamVid (
segmentation
) - Cityscapes (
segmentation
) - KITTI (
segmentation
,detection
) - KITTI 3D (
raw
/tracklets
/velodyne points
) - Supervisely (
pointcloud
) - SYNTHIA (
segmentation
) - CVAT
- LabelMe
- ICDAR13/15 (
word_recognition
,text_localization
,text_segmentation
) - Market-1501 (
person re-identification
) - LFW (
classification
,person re-identification
,landmarks
) - CelebA (
classification
,detection
,landmarks
) - Align CelebA (
classification
,landmarks
) - VoTT CSV (
detection
) - VoTT JSON (
detection
)
Supported annotation types
- Labels
- Bounding boxes
- Polygons
- Polylines
- (Segmentation) Masks
- (Key-)Points
- Captions
- 3D cuboids
Datumaro does not separate datasets by tasks like classification, detection etc. Instead, datasets can have any annotations. When a dataset is exported in a specific format, only relevant annotations are exported.
Dataset meta info file
It is possible to use classes that are not original to the format.
To do this, use dataset_meta.json
.
{
"label_map": {"0": "background", "1": "car", "2": "person"},
"segmentation_colors": [[0, 0, 0], [255, 0, 0], [0, 0, 255]],
"background_label": "0"
}
label_map
is a dictionary where the class ID is the key and the class name is the value.segmentation_colors
is a list of channel-wise values for each class. This is only necessary for the segmentation task.background_label
is a background label ID in the dataset.